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Abstract

The motivation and goals for developing a space-time spectral-element
Discontinuous-Galerkin solver for complex separated flows are discussed. The desire for
spectral elements in space and time to leverage current and next-generation computing
hardware and enable the development of novel subgrid-scale physical models for scale-
resolving simulations at practical engineering Reynolds numbers is discussed. Timing
results for hardware-optimized kernels are presented and demonstrate the ability of
space-time spectral-elements to utilize a significant fraction of the available comput-
ing power of an Intel Xeon processor. A dynamic Variational Multiscale Method is
developed and applied to the simulation of channel flow at Reτ = 544.

1 Introduction
With support from the NASA Revolutionary Computational Aerosciences (RCA) sub-

project, a research effort to investigate the use of adaptive high-order methods for scale-
resolving simulations of separated flow has been undertaken (cf. [1–3]). This research code,
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Figure 1: Truncation error in kinetic energy evolution for Taylor-Green vortex problem (M∞ = 0.1,
Re = 1600).

informally known as the eddy solver, is based on a space-time spectral-element Discontinuous-
Galerkin (DG) algorithm. Recently we have begun collaborative partnerships to extend this
effort to more direct engineering applications of interest in turbomachinery[4, 5], capsule
wakes and parachute dynamics, and transonic aerodynamics for launch vehicles.

There are numerous similar research projects examining adaptive high-order DG meth-
ods for a variety of applications. The current work aims to provide some background for
the motivation and goals of the current project, as well as technical details regarding the
hardware optimization and physical modeling approach behind effort. Specifically, the term
“high-order” is a catch-all for anything beyond a 2nd-order spatial operator. We specifically
characterize our effort as a spectral-element approach to distinguish that we seek to approach
spectral schemes in both space and time. Currently, we typically use 8th-order space-time
elements in practical simulations. The use of spectral elements provides both opportuni-
ties for order-of-magnitude gains in computational efficiency over current state-of-the-art
methods (cf. Fig. 1), and novel physical modeling approaches which take advantage of the
scale separation available in a spectral representation. Both of these subjects are considered
in terms of hardware-optimized algorithms and the development of a dynamic Variational
Multiscale Method (VMM).

2 of 23

American Institute of Aeronautics and Astronautics



2 Background
A single optimal Computational Fluid Dynamics (CFD) tool for all situations does not

exist, and seeking such an ultimate tool is a false goal. Rather, we have a Pareto frontier of
optimality wherein tradeoffs are made based upon the particular needs and priorities of our
targeted applications. For example, in solar physics simulations the emphasis is placed on
capturing complex physical phenomena over large time integration windows in a spherical
geometry, hence spectral methods are an attractive choice. A counterexample is aircraft
conceptual design studies, where the emphasis on physics is suppressed and priority is given
to automatic handling of arbitrary geometry, hence Cartesian methods are more appropriate.
In order to discuss the technical approach behind the developement of the eddy solver, it is
necessary to understand the context and goals behind the effort.

Within NASA our research supports a range of projects across the Aeronautics Research
Mission Directorate (ARMD), through the Advanced Air Transport Technology (AATT)
and Transformational Tools and Technologies (TTT) programs, the Human Exploration and
Operations Mission Directorate (HEOMD), through the Space Launch System (SLS) and
Orion programs, and the Space Technology Mission Directorate (STMD) through the Entry
Systems Modeling (ESM) project. A sampling of applications of interest across these projects
is presented in Fig. 2. With the exception of the parachute fluid-structure interaction, these
simulations were produced using CFD tools developed within NASA, namely OVERFLOW,
FUN3D, DPLR, and TURBO, using RANS modeling approaches. Our main goal is to
supplement these existing tools, which perform well in many engineering settings but often
struggle in the presence of complex unsteady physics.

The characteristics of the applications in Fig. 2 include complex geometry, complex
physics (separation, shock-boundary layer interaction, jet interactions, aeroheating), multi-
disciplinary analysis (parachute fluid-structure interaction), and multiphysics (combustion
and non-equilibrium chemistry). These characteristics drive decisions about the type of nu-
merical methods best suited to all of these diverse applications. The need to handle complex
geometry leads to a desire for methods which accept adaptive unstructured meshes. The
stiffness associated with high-Reynolds number flows, combustion, and chemistry motivates
the use of fully implicit methods, so the timestep can be chosen by the physics encountered
rather than stability limitations. The presence of massive separation, shock-boundary layer
interaction, and jet interactions leads to a desire for scale-resolving modeling approaches
such as large-eddy simulation (LES) to provide the necessary accuracy for the complex
physics encountered. The computational expense associated with unsteady LES simulations
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Figure 2: Sample of NASA CFD applications in aerodynamics, aeroheating, turbomachinery, and parachute
fluid-structure interaction. Results computed using the OVERFLOW, FUN3D, DPLR, TURBO, and VTF
solvers.
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of high-Reynolds number applications motivates the extensive use of high-order methods in
space and time in order to provide the necessary efficiency. The need for multiphysics and
multi-disciplinary analysis requires a robust and flexible formulation that is easily extensible.

Examining the above requirements, we have chosen to develop a spectral-element DG
formulation. This provides an efficient scheme on unstructured grids, which can utilize the
VMM in order to provide a scale-resolving modeling approach[6]. We employ a fully implicit
space-time scheme which enables the use of a robust entropy-stable formulation[7, 8] that
extends consistently to the incompressible limit[9], as well as h and p adaptation in both space
and time. An output-based h-p adaptive strategy based on an adjoint space-time formulation
is being devloped[10]. Lastly, the Galerkin formulation provides a consistent mathematical
foundation which has been demonstrated for fluid-structure interaction, combustion, and
non-equilibrium chemistry applications(cf. [11–14]).

While we have chosen a DG algorithm, all of the above requirements can also be met
using a Continuous-Galerkin (CG) algorithm. Initially the goal was to maintain both a
DG and CG solver within the same computational framework, however this proved to be
beyond our human resource limitations. Some of the rationale behind downselecting to
a DG algorithm are the ease of implementation in an adaptive framework due to lower
communication between elements, the ability to (optionally) utilize hanging nodes in an
adaptive framework, and our focus on high-speed applications where robustness is primary
and DG methods have a stronger track record.

3 Hardware-Optimized Kernels
NASA’s main high-end computing (HEC) resource is the Pleiades Supercomputer, built

around the family of Intel Xeon processors. The majority of legacy CFD solvers utilize less
than 5% of the capacity of these processors in terms of single-threaded performance. For
many years this inefficiency was hidden by gains in clock speed, however now clock speed is
decreasing due to requirements to limit power consumption, and the legacy implementations
are not well placed to take advantage of the latest chip designs. The cause of this behavior
can be analyzed using a simplified roofline model[15] (Fig. 3). The horizontal axis is the
operational intensity of the algorithm, essentially the number of flops performed for every
byte of data movement. Finite-difference stencils have a low operational intensity (O(1)),
fast-fourier transform algorithms have a medium intensity (O(log(N))), and dense linear al-
gebra kernels have a high intensity (O(N)). Most legacy CFD applications have an intensity
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Figure 3: Simplified roofline model for Intel Xeon processors.

around 1/8, or one flop/double. This indicates that the performance of these algorithms is
limited by memory bandwidth restrictions, irrespective of any optimization or tuning done
to the code. As bandwidth restrictions are expected to be restrictive going forward, in order
to take full advantage of current and future computational resources, algorithms with a high
computational intensity are required.

While algorithms with high operational intensity may require more flops per se, the
ability to leverage a large fraction of the processor capability more than counterbalances
this cost. More importantly, the performance of high intensity operations will continue to
improve in future processor generations, while lower intensity algorithms will suffer greater
losses. Figure 4 presents an overview of the Intel Xeon processor roadmap. As noted above,
clock speed is now essentially flat for each successive generation of processor. Floating-
point performance gains are primarily being realized by wider single instruction, multiple
data (SIMD) vector registers, and more complex instruction sets, e.g. fused multiply-add.
It is often naively assumed that compiler optimization will automatically provide sufficient
performance gains for new hardware, however Proebsting’s Law[16] demonstrates that this
is wildly optimistic, as compiler optimization doubles performance of a typical code roughly
every 18 years. Given the complexity of evolving processor designs, this seems unlikely to
improve going forward.

Space-time spectral-elements are well positioned to take advantage of modern processor
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Figure 4: Overview of Intel Xeon processor roadmap.

designs, such as the Intel Xeon and Xeon Phi. A 16th-order element typically has over 1M
coupled quadrature points,* so there is a lot of potential parallelism to exploit. We have
designed our DG spectral-element solver around several core linear algebra kernels that are
exposed in the tensor-product sum-factorization algorithm (cf. [1]). These kernels appear in
the residual calculation, the matrix-free linearization, the preconditioner, etc. By optimizing
these kernels specifically for the hardware of interest, in this case Xeon processors, the N4

growth in the number of floating-point operations required with increasing order is offset.
Figure 5 presents an example from [10], where the cost/dof for both the Jacobian linearization
search direction and its transpose are essentially independent of solution order.†

Taking a deeper look, the performance of the linear algebra kernels are compared on
the last two ”ticks” of Intel Xeon processor models, Sandy Bridge and Haswell. Figure 6
presents benchmark timings for increasing order of accuracy using machine-coded routines
and the Intel MKL BLAS library for comparison. It should be noted that the kernels are
optimized for each architecture individually, i.e. the machine code for Sandy Bridge and
Haswell are different, as is necessary to take advantage of the richer Intel AVX2 instruction
set on Haswell. The benchmark in Fig. 6 represents roughly 20% of the computational cost
of the eddy solver, and is hence a non-trivial demonstration. At 8th order the kernels achieve
75% and 70% of the processor theoretical peak on Sandy Bridge and Haswell respectively,
and significantly outperform the MKL implementation. At 16th order cache effects appear
and it is more difficult to outperform the BLAS library. The results in Fig. 6 demonstrate

*We typically evaluate quadratures using at least 2x the collocated dof.
†As this data is normalized by the spatial dof, an N4 increase in cost would appear as linear growth.
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Figure 5: Computational cost per degree of freedom of the forward and transpose Fréchet derivatives –
Computed on one processor core of Intel Xeon E5-2680v2.
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Figure 6: Performance of hardware-optimized tensor-product sum-factorization linear algebra kernels.

that the potential of spectral elements is not just theoretical. The increase in performance
from Sandy Bridge to Haswell is roughly 2x across all polynomial degrees, in line with the
increase in theoretical peak between the machines, even though the processor clock speed
actually decreases. The above trends hold true on the next generation of Xeon processors,
which provide another 2x increase in SIMD vector width.

The space-time formulation provides the opportunity to exploit multiple levels of paral-
lelism. As is standard in most CFD codes, elements are distributed in space and commu-
nication between them uses the MPI protocol. Parallelization using SIMD instructions is
carried out, as described above. In addition, the quadrature points in the temporal direction
within each element can be processed in parallel, in this case using OpenMP threads. This
time-parallel implementation is especially important for spectral-element methods, as the el-
ements themselves are large when using very high order. To discretize using 1M space-time
dof using 16th-order elements requires only 16 elements. It is necessary to scale beyond 16
MPI ranks in order to reduce the wallclock turnaround time.

The linear algebra kernel benchmark discussed above operates over spatial dof only. This
is wrapped using an OpenMP threaded implementation for the temporal projection operator
at each spatial dof and for each flow equation. The strong scaling performance on an Ivy
Bridge node using this approach for 8th and 16th order elements is presented in Fig. 7. The
benchmark achieves roughly 90% parallel efficiency on all cores within a node at 16th order.
Combined with the results from Fig. 6, this provides a measured performance of roughly
500 Gflops per Haswell Xeon node for the full space-time benchmark at 8th order. For
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Figure 7: Computational cost per degree of freedom of the forward and transpose Fréchet derivatives –
Computed on one processor core of Intel Xeon E5-2680v2.

comparison, the theoretical double-precision peak of an NVIDIA Tesla K40m GPU is 1.43
Tflops.

4 Dynamic Variational Multiscale Method
The VMM is a reformulation of the classical LES method, in which the filtering operation,

used to explicitly separate resolved and unresolved scales, is replaced by a Galerkin projection
operator [6, 17]. In this way the numerical method and the physical model are strongly
integrated, i.e. the physical model is specifically tailored to take advantage of features of
the numerical scheme. This philosophy is mirrored in the development of wavelet-based
schemes[18] and compact Padé schemes[19] for scale-resolving methods.

In the VMM, the long-distance triadic interactions involving the unresolved scales are
ignored, and the unresolved scales are assumed to only interact with the finest resolved
scales, thus ensuring that no energy is removed from the large structures in the flow via a
model. Previous work using VMM demonstrates the success of using a fixed-coefficient eddy-
viscosity model for the sub-grid stresses, including for attached wall-bounded applications
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[17, 20–22]. In order to apply the method to general complex flows, including those with
separation, it is necessary to replace the fixed-coefficient model with a mechanism that
automatically adapts to the local resolution and flow physics. As the typical VMM model
is based on a Smagorinsky eddy-viscosity model, leveraging Germano’s dynamic procedure
from classical LES [23] is an obvious first step. This has been accomplished for finite-volume
VMM schemes using an agglomeration operator to separate the fine and coarse scales[24].

Previous work developed a dynamic VMM approach for the current entropy-stable DG
spectral-element solver[25]. The use of spectral elements provides an efficient scheme for
resolving complex flows with a range of physical scales, and also a method that provides clear
separation of these scales for the VMM. This dynamic VMM approach is first reviewed here
for completeness, and then results of predicting a channel flow at Reτ = 544 are presented.

4.1 Incompressible Formulation

We begin by describing the dynamic approach for the incompressible Navier-Stokes equa-
tions to simplify the discussion, highlight the similarities to the classical LES approach, and
demonstrate the parallels to the compressible formulation. Development of an entropy-stable
compressible formulation then follows.

The incompressible, isothermal Navier-Stokes equations are given by

ui,i = 0 (1)

ui,t + (uiuj),j = −1
ρ

∂j (pδij) + νui,jj, (2)

Writing the momentum equations in weak form over the domain Ω we have

(ui,t, wi) − (uiuj, wi,j) − 1
ρ

(pδij, wi,j) + (νui,j, wi,j)

+ (uiuj + pδij, winj)∂Ω − (νui,j, winj)∂Ω = 0 ∀w ∈ V ,

(3)

where w is the test function. This is written compactly as

Ru (u, w) = 0. (4)

where Ru is the bilinear operator of Eq. 3.
In a variational multiscale method we a priori decompose the continuous space as V =

Ṽ ∪ V̌ ∪ V̂ where Ṽ are the coarse scales, V̌ are the fine scales, and V̂ are the unresolved
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Figure 8: A priori scale separation for a variational multiscale method following the triple decomposition
of [26].

scales that cannot be represented on the current discretization (cf. Figure 8, [26]). A similar
decomposition follows for the velocity field, u = ũ+ǔ+û. Under suitable choice of orthogonal
spaces, Ṽ ∩ V̌ = ∅, etc., we have the following for the incompressible momentum equations

Ru (ū, w̄) + τ (u, w̄) = 0 ∀w̄ ∈ V̄ = Ṽ ∪ V̌ , (5)

where ū = ũ + ǔ, w̄ = w̃ + w̌, and

τ (u, w̄) = (ûiûj, w̄i,j) + (ūiûj, w̄i,j) + (ûiūj, w̄i,j) (6)
= (uiuj − ūiūj, w̄i,j) (7)

is the projection of the unresolved/“subgrid-scale” stress terms onto w̄ that must be modeled
to close the system.

The VMM assumes the unresolved scales only interact with the fine scales. The coarse
and fine scales are defined by low-pass (P) and high-pass (P) orthogonal projection operators
respectively on the resolved scales,

w̃ = Pw̄, w̌ = Pw̄, P (Pw̄) = ∅, P
(
Pw̄

)
= ∅. (8)

Assuming a gradient-diffusion (eddy-viscosity) model for τ we have

τ (u, w̄) ≃ −2
(
(C1∆)2 ∥Ši,j∥Ši,j, w̌i,j

)
, (9)
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where Si,j = 1/2 (ui,j + uj,i) is the symmetric strain-rate tensor. This is similar to the
high-pass filtered Smagorinsky models[27]. The subgrid-stress coefficient C1 is not equiva-
lent to the standard Smagorinsky constant due to the scale separation of the VMM. The
subgrid-stress coefficient is inside the inner product operator, which is akin to keeping the
Smagorinsky constant inside the filter operator in a classical LES method.

Equation 9 is a bilinear operator valid over any space V̄ , hence we can construct a
variational analogue to the classical LES Germano dynamic procedure [23] to determine
the eddy-viscosity coefficient. Denoting the current resolution by h, and applying a second
projection (filter) operator to a coarser “test” space, H, we have the subgrid-stress on the
current and test space as

τ
(
u, w̄h

)
=

(
uiuj − ūh

i ūh
j , w̄h

i,j

)
(10)

T
(
u, w̄H

)
=

(
uiuj − ūH

i ūH
j , w̄H

i,j

)
. (11)

Projecting the subgrid-stresses τ to the test space H and forming the variational dynamic
Leonard stresses gives

L
(
u, w̄H

)
= T

(
u, w̄H

)
− τ

(
u, w̄H

)
=

(
ūh

i ūh
j − ūH

i ūH
j , w̄H

i,j

)
=

−2
(
(C1∆)2 ∥Šh

i,j∥Šh
i,j, w̌H

i,j

)
+ 2

(
(C1∆)2 ∥ŠH

i,j∥ŠH
i,j, w̌H

i,j

)
,

(12)

where we’ve likewise followed a similar procedure for the modeled subgrid-stresses. Note that
this approach varies from the dynamic localization of [28], whereby a variational formulation
is built from the strong form of the Leonard stresses. Here a consistent formulation is used
to directly construct a dynamic procedure for the variational form of the subgrid model
stresses, similar to the approaches of [29] and [24].

If C1 is assumed constant within an element, the inner product can be used to reduce
Eq. 12 to a scalar equation with clear physical interpretation. For example, using the velocity
as the test function, w̄i,j = ūi,j, produces a variational analogue to Germano’s dynamic
procedure for classical LES. Similarly, defining

Mij = −2∆2∥Šh
i,j∥Šh

i,j + 2∆2∥ŠH
i,j∥ŠH

i,j (13)

and using the L2 projection of Mij for the test function reproduces a variational analogue of
Lilly’s least-square procedure [30].
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4.2 Compressible Formulation

The Navier-Stokes equations for compressible viscous flow are

qi,t + fij,j − gij,j = 0, (14)

where qi are the conserved quantities, fij is the inviscid flux, and gij is the viscous flux,

qi =


ρ

ρuk

ρe

 , fij =


ρuj

ρukuj + pδkj

ρeuj + puj

 , gij =


0

τkj

ukτkj + κT,j

 .

Writing Eq. 14 in weak form gives

(qi,t, wi) − (fij, wi,j) + (gij, wi,j) + (fij, winj)∂Ω − (gi,j, winj)∂Ω = 0 ∀w ∈ V (15)

or
Rq (q, w) = 0 ∀w ∈ V . (16)

Again decomposing into fine, coarse, and unresolved scales, we assume that the effect of
the unresolved scales on the diffusion coefficients is negligible. This gives

Rq (q̄, w̄) + β (q, w̄) = 0 ∀w̄ ∈ V̄ , (17)

where
β (q, w̄) = (fij (q) − fij (q̄) , w̄i,j) . (18)

Introducing the generalized entropy variables that symmetrize the compressible Navier-
Stokes equations (cf. [7], [8]),

vi =


− s

γ−1 + γ+1
γ−1 − ρe

p
ρuk

p

−ρ
p

 , (19)

we then have
β (v, w̄) ≃ (fij (v) − fij (v̄) , w̄i,j) . (20)

Numerically, entropy in compressible flow fills an analogous (though more complex) role
to kinetic energy in incompressible flow. When simulating an incompressible flow we desire
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a scheme with a global energy bound, whereas in compressible flow simulations we desire a
scheme with a global entropy bound. When the velocity field is used as the test function
in Eqn. 12 the momentum flux is an advection of kinetic energy. Analogously, choosing the
entropy variables as the test function in Eq. 20 leads to advection of entropy for the resolved
“stresses”,

(fij, vi,j) =
∫

Ω
∂i (uiρs) =

∫
∂Ω

ρsuini compressible (21)

(uiuj, uj,i) =
∫

Ω
∂i

(
ui

ujuj

2

)
=

∫
∂Ω

ujuj

2
uini incompressible (22)

Because the entropy variables are complex nonlinear functions of the conservative vari-
ables, the model integrated using entropy variables is not identical to the scale separation in
conservative variables, i.e. fij (v̄) ̸= fij (q̄). A similar approximation under different model-
ing assumptions is described in [31]. The alternative, applying the scale separation directly to
the entropy variables, introduces nonlinear products in the time derivative that are difficult
to model. In the current low-speed numerical tests these approximations are unimportant.
A more thorough analysis of the modeling assumptions for high-speed compressible flow is
left for future work.

The subgrid-stress model for compressible flows mimics the diffusion terms in entropy
variables,

β (v, w̄) ≃ −
(
(C1∆)2 ∥v̌i,j∥v̌i,j, w̌i,j

)
. (23)

The dynamic procedure then becomes

(
fij

(
v̄h

)
− fij

(
v̄H

)
, w̄H

i,j

)
= −

(
(C1∆)2 ∥v̌h

i,j∥v̌h
i,j, w̌H

i,j

)
+

(
(C1∆)2 ∥v̌H

i,j∥v̌H
i,j, w̌H

i,j

)
, (24)

with the entropy variables used as the test function to determine the scalar coefficient C1.
Alternatively, by assuming a value for the subgrid-stress Prandtl number the modeled stresses
can be constructed using the subgrid-stress analogue to the full viscous Jacobian instead of
the diagonal approximation in Eq. 23. These two approaches are indistinguishable in the
current low-speed testing.

4.3 Channel Reτ = 544

A priori testing and analysis of the dynamic procedure for homogenous isotropic turbu-
lence, channel flow, and flow over periodic hills is presented in [25]. Here we examine a poste-
riori performance for a channel flow at Reτ = 544. Simulations using 4th order in time and
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8th order in space were performed using the same aspect ratio computational domain as Lee
and Moser[32] (8πh x 2h x 3πh). Previous simulations demonstrate that the dynamic VMM
converges to the DNS result for the channel flow given sufficient resolution, however this is
simply a demonstration of consistency. Here, the near-wall spacing is intentionally coarser
than typical wall-resolved LES simulations in order to highlight modeling differences. With
sufficient resolution many subgrid-scale modeling approaches provide acceptable results, and
this is straightforward to construct for model problems such as the current channel flow. In
practical situations sufficient resolution is not available, and is not known a priori, hence we
seek to test the behavior under realistic under-resolved conditions. The near-wall resolution
of the current computational mesh is ∆t+ = 1, ∆x+ = 100, ∆y+ = 1, ∆z+ = 50, which is
roughly an order of magnitude larger in the streamwise and span directions than the resolu-
tion used in Lee and Moser’s spectral DNS computations. These quoted resolutions represent
the average over the wall-bounded element.

The entropy-stable DG scheme is used to compute the statistics over 20 eddy turnover
timescales using the Ismail and Roe approximate Riemann solver[33], which is effectively an
implicit LES (ILES) model, and the same scheme using the VMM with a static coefficient,
C1 = 0.1. This coefficient matches the value used by Hughes et al. for Reτ = 180 channel
flow simulations[20]. The high-pass VMM filter cuts off at the top 1/2 of the computed
modes. Figure 9 presents the computed mean velocity and R11 Reynolds-stress profile after
averaging over the homogeneous directions. The profiles indicate that both simulations are
overly dissipative through the buffer and log layers, as is expected with insufficient resolution.
The VMM simulations using a static coefficient negatively impact the results.

We use a model turbulent energy spectrum to help understand the behavior observed in
Fig. 9. Idealized behavior using an ILES method and a dynamics LES method for two reso-
lutions are presented in Fig. 10. In an ILES simulation the numerical dissipation is expected
to act as a subgrid-scale model. Regardless of how well this numerical model behaves, by
definition the ILES model is being applied on a mesh incapable of fully resolving the de-
sired Reynolds number. Thus, the ILES is at best simulating a flow at an unknown lower
Reynolds number depending upon the numerics of the method and the resolution. When we
add a static-coefficient VMM we are exacerbating this situation and adding more dissipation
that effectively lowers the resolved Reynolds number even further. In contrast, the goal of a
dynamic LES procedure is to accurately resolve the turbulent energy spectrum through the
inertial subrange scales, independent of mesh resolution. The modeled dissipation is then
intended to mimic the physical processes associated with the smallest scales.
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Figure 9: Computed velocity profiles for channel flow at Reτ = 544. DNS data from Lee and Moser[32].
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In order to properly capture the inertial subrange scales appropriate numerical methods
must be utilized. For incompressible flows these methods are typically high-order skew
symmetric operators, or similar, which are kinetic energy preserving and have no dissipation
and low dispersion error (cf. [34, 35]). For compressible flows, the entropy-stable schemes
are inherently dissipative, and hence an appropriate choice of method is unclear. Here, we’ve
initially chosen to simply remove the numerical dissipation associated with the approximate
Riemann solver. While this is not formally entropy stable independent of resolution, the
dissipation associated with the physical subgrid-scale model is intended to provide sufficient
stability. Note that the construction of the dynamic VMM described above is guaranteed
not to remove entropy from the domain.

Repeating the channel flow simulations now with the numerical dissipation from the Rie-
mann solver removed, and then using the same scheme with both the static VMM (C1 = 0.1)
and the dynamic VMM procedure is presented in Fig. 11. The “no dissipation” simulation is
the best prediction of the DNS result, but still overpredicts the the production of Reynolds
stress through the buffer layer at the current coarse resolution. The dynamic VMM pro-
cedure does add dissipation, however it is less than the ILES and static VMM dissipation,
especially in terms of Reynolds stress production. In this sense the dynamic VMM proce-
dure does a better job removing the sensitivity of subgrid-scale models to mesh resolution
than the ILES or static coefficient VMM methods. This is important when applying these
methods in a truly predictive sense for complex flows. The variation of mean subgrid-scale
coefficient, C1, across the channel half-width is presented in Fig. 12. As desired, the dynamic
VMM coefficient approaches zero in the viscous near-wall region, and is in good agreement
with previous analysis in the log layer as C1 ≈ 0.1 in this region. The slight decay towards
the centerline is also observed in classical dynamic LES simulations of channel flow[36].

5 Future Work
While there is always room for improvement, the eddy solver is a fully capable prototype

for space-time spectral-element DG applied to scale-resolving simulations of separated flows.
The use of a tensor-product preconditioner with an entropy-stable space-time formulation
provides an efficient and robust platform that can be extended to more complex physics and
multi-disciplinary applications. Hardware-optimized kernels developed specifically for the
tensor-product sum-factorization approach provide an existence proof that spectral-element
methods are capable of exploiting modern processor designs. An interesting next step is
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Figure 11: Computed velocity profiles for channel flow at Reτ = 544. Except for the ILES simulation, all
computations have removed the numerical dissipation from the Riemann solver. DNS data from Lee and
Moser[32].
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examining how the time-parallel hybrid MPI/OpenMP approach extends to the novel Intel
Xeon Phi Knights Landing architecture.

Currently we are partnering with subject-matter experts to apply these methods to rele-
vant engineering applications of interest. The first demonstrations for low-pressure turbine
blades are encouraging, and demonstrate the benefits of the approach over traditional 2nd-
order RANS methods. Similar efforts are underway for capsule wake aerodynamics with
parachute fluid-structure interaction, and transonic buffet of launch vehicles (cf. [37]). These
efforts involve extending the space-time algorithm to a general relative motion scheme to
support rotating machinery and parachute dynamics, as well as further developing the ability
to handle high-order complex geometry (cf. [38]).
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